94 research outputs found

    Multiparticle Bell's inequalities involving many measurement settings

    Full text link
    We present a prescription for obtaining Bell's inequalities for N>2 observers involving more than two alternative measurement settings. We give examples of some families of such inequalities. The inequalities are violated by certain classes of states for which all standard Bell's inequalities with two measurement settings per observer are satisfied.Comment: 4 pages, RevTeX

    Small sets of complementary observables

    Full text link
    Two observables are called complementary if preparing a physical object in an eigenstate of one of them yields a completely random result in a measurement of the other. We investigate small sets of complementary observables that cannot be extended by yet another complementary observable. We construct explicit examples of the unextendible sets up to dimension 1616 and conjecture certain small sets to be unextendible in higher dimensions. Our constructions provide three complementary measurements, only one observable away from the ultimate minimum of two observables in the set. Almost all of our examples in finite dimension allow to discriminate pure states from some mixed states, and shed light on the complex topology of the Bloch space of higher-dimensional quantum systems

    Coherent chemical kinetics as quantum walks II: Radical-pair reactions in Arabidopsis thaliana

    Full text link
    We apply the quantum-walk approach recently proposed in arXiv:quant-ph-1506.04213 to a radical-pair reaction where realistic estimates for the intermediate transition rates are available. The well-known average hitting time from quantum walks can be adopted as a measure of how quickly the reaction occurs and we calculate this for varying degrees of dephasing in the radical pair. The time for the radical pair to react to a product is found to be independent of the amount of dephasing introduced, even in the limit of no dephasing where the transient population dynamics exhibit strong coherent oscillations. This can be seen to arise from the existence of a rate-limiting step in the reaction and we argue that in such examples, a purely classical model based on rate equations can be used for estimating the timescale of the reaction but not necessarily its population dynamics

    Quantum discord bounds the amount of distributed entanglement

    Full text link
    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of non-classical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states and put further limits on this phenomenon.Comment: 8 pages, 1 figure, RevTeX4; Accepted for publication in Phys. Rev. Let

    Nonclassical trajectories in head-on collisions

    Get PDF
    Rutherford scattering is usually described by treating the projectile either classically or as quantum mechanical plane waves. Here we treat them as wave packets and study their head-on collisions with the stationary target nuclei. We simulate the quantum dynamics of this one-dimensional system and study deviations of the average quantum solution from the classical one. These deviations are traced back to the convexity properties of Coulomb potential. Finally, we sketch how these theoretical findings could be tested in experiments looking for the onset of nuclear reactions.Comment: 16 pages, 8 figure

    Logical independence and quantum randomness

    Full text link
    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.Comment: 9 pages, 4 figures, published version plus additional experimental appendi

    Bell inequality for pairs of particle-number-superselection-rule restricted states

    Full text link
    Proposals for Bell inequality tests on systems restricted by superselection rules often require operations that are difficult to implement in practice. In this paper, we derive a new Bell inequality, where pairs of states are used to by-pass the superselection rule. In particular, we focus on mode entanglement of an arbitrary number of massive particles and show that our Bell inequality detects the entanglement in the pair when other inequalities fail. However, as the number of particles in the system increases, the violation of our Bell inequality decreases due to the restriction in the measurement space caused by the superselection rule. This Bell test can be implemented using techniques that are routinely used in current experiments.Comment: 9 pages, 6 figures; v2 is the published versio
    corecore